Part Number Hot Search : 
FN4555 SP8481KP JT6N57 NKE1215D SR104 RT1N151S TFS82B LTK00MH
Product Description
Full Text Search
 

To Download AOD413A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AOD413A P-Channel Enhancement Mode Field Effect Transistor
General Description
The AOD413A uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications. -RoHS Compliant -Halogen Free*
TO-252 D-PAK
Features
VDS (V) = -40V (VGS = -10V) ID = -12A RDS(ON) < 44m (VGS = -10V) RDS(ON) < 66m (VGS = -4.5V) 100% UIS Tested! 100% Rg Tested!
Top View D
Bottom View
D
G S G S G S
Absolute Maximum Ratings TA=25 unless otherwise noted C Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage Continuous Drain Current B,H Pulsed Drain Current Avalanche Current C Repetitive avalanche energy L=0.1mH TC=25 C Power Dissipation B Power Dissipation A TC=100 C TA=25 C TA=70 C Junction and Storage Temperature Range Thermal Characteristics Parameter A,G Maximum Junction-to-Ambient A,G Maximum Junction-to-Ambient Maximum Junction-to-Case F
C C
Maximum -40 20 -12 -9 -30 -20 20 50 25 2.5 1.6 -55 to 175
Units V V
VGS C TC=25 TC=100 C ID IDM IAR EAR PD PDSM TJ, TSTG
A
mJ
W
C
Symbol t 10s Steady-State Steady-State RJA RJC
Typ 16.7 40 2
Max 25 50 3
Units C/W C/W C/W
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOD413A
Electrical Characteristics (TJ=25 unless otherwise noted) C Symbol Parameter Conditions ID= -250A, VGS=0V VDS= -40V, VGS=0V TJ=55 C VDS=0V, VGS= 20V VDS=VGS ID= -250A VGS= -10V, VDS= -5V VGS= -10V, ID= -12A RDS(ON) gFS VSD IS Static Drain-Source On-Resistance VGS= -4.5V, ID= -8A Forward Transconductance Diode Forward Voltage VDS= -5V, ID= -12A IS= -1A,VGS=0V TJ=125 C -1.7 -30 36 52 52 22 -0.76 -1 -2.5 900 VGS=0V, VDS= -20V, f=1MHz VGS=0V, VDS=0V, f=1MHz 97 68 14 16.2 VGS= -10V, VDS= -20V, ID= -12A 7.2 3.8 3.5 6.2 VGS= -10V, VDS= -20V, RL=1.6, RGEN=3 IF= -12A, dI/dt=100A/s 8.4 44.8 41.2 21.2 13.8 21 9.4 1125 44 65 66 S V A pF pF pF nC nC nC nC ns ns ns ns ns nC m -2 Min -40 -1 -5 100 -3 Typ Max Units V A nA V A
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg (-10V) Total Gate Charge Qg (-4.5V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF= -12A, dI/dt=100A/s
A: The value of RJA is measured with the device in a still air environment with T A =25 The power dissipation P DSM and current rating IDSM C. are based on TJ(MAX)=150 using t 10s junction-to-ambient thermal resistance. C, B. The power dissipation PD is based on TJ(MAX)=175 using junction-to-case thermal resistance, and is more useful in setting the upper C, dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175 C. D. The RJA is the sum of the thermal impedence from junction to case RJC and case to ambient. -20 E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. 20 F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming C. a maximum junction temperature of TJ(MAX)=175 The SOA curve provides a single pulse ratin g. G. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25 C. H. The maximum current rating is limited by bond-wires. *This device is guaranteed green after data code 8X11 (Sep 1ST 2008). Rev1: Oct 2008 COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOD413A
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
30 -10V 25 -4.0V 20 -ID (A) -ID(A) 15 -3.5V 10 5 0 0 1 2 3 4 5 -VDS (Volts) Figure 1: On-Region Characteristics 10 125C VGS= -2.5V 5 25C 0 1.5 2 2.5 3 3.5 4 4.5 5 -VGS(Volts) Figure 2: Transfer Characteristics 20 15 -4.5V 25 30 VDS= -5V
70 Normalized On-Resistance 65 60 RDS(ON) (m ) 55 50 45 40 35 30 0 5 10 15 20 -ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage VGS= -10V VGS= -4.5V
1.8 1.6 1.4 1.2 1 0.8 0.6 -60 -30 0 30 60 90 120 150 180 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature VGS= -10V ID= -12A
VGS= -4.5V ID= -8A
120 ID= -12A
100 10
100 1 RDS(ON) (m ) -IS (A) 80 125C 60 25C 40 0.0001 20 3 4 5 6 7 8 9 10 -VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage 0.00001 0.0 0.1 0.01 0.001
-20 20
125C 25C
0.2
0.4
0.6
0.8
1.0
1.2
-vSD (Volts) Figure 6: Body-Diode Characteristics
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOD413A
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10 VDS= -20V ID= -12A Capacitance (pF) 1200 1000 800 600 400 Coss 200 0 0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30 35 40 Qg (nC) Figure 7: Gate-Charge Characteristics -VDS (Volts) Figure 8: Capacitance Characteristics Crss
8 -VGS (Volts)
Ciss
6
4
2
0
100 10s -ID (Amps) 10 RDS(ON) limited 100s
10000 TJ(Max)=175C TC=25C 1000 1ms 10ms Power (W)
1 TJ(Max)=175C TC=25C 0.1 1 -VDS (Volts) 10
DC
100
0.1
100
10 0.00001
0.0001
0.001
0.01
0.1
1
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
10 Z Jc Normalized Transient Thermal Resistance
D=Ton/T TJ,PK=Tc+PDM.ZJC.RJC RJC=3C/W
In descending order -20 D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
20
1
0.1
PD Ton Single Pulse
T 1 10
0.01 0.00001
0.0001
0.001
0.01
0.1
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOD413A
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
60 50 40 30 20 10 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 12: Power De-rating (Note B) 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 13: Current De-rating (Note B) -Current rating ID(A) 15 20
Power Dissipation (W)
10
5
1000
TJ(Max)=150C TA=25C
Power (W)
100
10
1 0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)
10 Z JA Normalized Transient Thermal Resistance In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1
150 -20 20
0.1 PD 0.01 Single Pulse 0.001 0.00001 0.0001 0.001 0.01 D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=50C/W 0.1 1 Ton
T 100 1000
10
Pulse Width (s) Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOD413A
Gate Charge Test Circuit & Waveform
Vgs Qg -10V
VDC
VDC
DUT Vgs Ig
Resistive Switching Test Circuit & Waveforms
RL Vds Vgs Vgs Rg DUT
VDC
Vgs Vds
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L Vds Id Vgs Rg DUT Vgs Vgs Vgs
VDC
Diode Recovery Test Circuit & Waveforms
Vds + DUT Vgs
t rr
Vds Isd Vgs Ig
L
VDC
+ Vdd -Vds
Alpha & Omega Semiconductor, Ltd.
+
-
+
-
+
Charge
ton td(on) tr td(off) toff tf
-
+
-
Vds
Qgs
Qgd
Vdd
90%
10%
EAR= 1/2 LIAR
2
Vds BVDSS Vdd Id I AR
Q rr = - Idt
-Isd
-I F
dI/dt -I RM Vdd
www.aosmd.com


▲Up To Search▲   

 
Price & Availability of AOD413A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X